Beam Loading

- Long train of bunches
- Bunches in front extract energy from linac
 - ◆ Lower gradient
 - Increase phase
- Effect on later bunches
 - Bunch placed correctly ignoring beam loading
 - Bunch doesn't gain enough energy
 - ◆ If it gained enough energy, it would arrive at the same RF phase
 - ◆ Non-isochronous arc: bunch arrives in next linac late, sees higher gradient.
 - Gains excess energy

Beam dynamics

- ◆ If bunch gained energy of reference bunch, it would arrive at same phase each time
- ◆ There is (?) a phase which gives bunch the reference energy
- Thus, fixed point at reference energy, but different time
- Bunch not placed at that fixed point:
 - **★** Oscillates about fixed point
 - **★** Nonlinearity: filaments to larger emittance
- Different RF bucket
 - ★ Closer to crest, lower gradient: smaller area
 - **★** Different matched ellipse
 - **★** Offset of fixed point
- ◆ Too much gradient lost: cannot gain back reference energy

Hamiltonain Formulation

• Write down Hamiltonian

$$-\frac{1}{2}A_{56}\Delta^2 + \frac{q\bar{v}}{\omega}\sin(\omega\tau + \bar{\phi}) - \frac{qv}{\omega}(\omega\tau\cos\phi + \sin\phi)$$

- \bullet v is unloaded gradient, ϕ is unloaded phase
- \bar{v} is loaded gradient, $\bar{\phi}$ is loaded phase
- Fixed point:

$$\Delta = 0 \qquad \bar{v}\cos(\omega\tau + \bar{\phi}) = v\cos\phi$$

Matched aspect ratio

$$\frac{\sigma_E^2}{\sigma_\tau^2} = \frac{q\omega\sqrt{\bar{v}^2 - v^2\cos^2\phi}}{A_{56}}$$

Compute Results

- $\bar{v}\cos\bar{\phi} v\cos\phi \equiv \Delta(v\cos\phi)$
- $\bullet \bar{v} v \equiv \Delta v$
- Assume small Δv
- Assume bunch has correct energy, time, aspect ratio for unloaded reference bunch
- $\bar{v} > v \cos \phi$ required for oscillation
 - Otherwise, energy drifts monotonically
- Energy amplitude of oscillation

$$\frac{q\Delta(v\cos\phi)}{\sqrt{\omega A_{56}qv\sin\phi}}$$

• Emittance blowup

$$\frac{\epsilon_L}{8} \left(\frac{\Delta v}{v}\right)^2 \csc^4 \phi + \frac{1}{2\omega^2} \sqrt{\frac{q\omega v \sin \phi}{A_{56}}} \left[\frac{\Delta (v \cos \phi)}{v \sin \phi}\right]^2$$

- First term: mismatch
- Second term: filamentation
- Doesn't occur immediately
- Decrease in bucket area

Beam Loading in Linac

$$\Delta(v\cos\phi) = \frac{q\omega r_s}{2Q}$$
 $\Delta v = \frac{q\omega r_s}{2Q}\cos\phi$

Condition to get oscillations

$$v > \frac{qr_s\omega}{2Q}\csc^2\phi\left[\cos\phi + \sqrt{\cos(2\phi)}\right]$$

- Always OK when $\phi > 45^{\circ}$
- \bullet Easier at higher ϕ
- Energy oscillation amplitude, relative to RMS energy spread

$$\frac{qr_s}{2Q\sigma_\tau v\sin\phi}$$

- ◆ Larger for short bunch: fixed point further outside distribution
- Larger oscillation closer to crest
- Emittance growth

$$\frac{1}{2} \left(\frac{q r_s}{2Q \sigma_\tau v \sin \phi} \right)^2 \left[1 + \left(\frac{\omega \sigma_\tau \cot \phi}{2} \right)^2 \right]$$

Comments

- Slightly larger in real life:
 - ◆ System discrete
 - Performs much of oscillation before arc corrects it
- Large oscillations become an issue before you run out of gradient
- Design of loaded RLAs:
 - Design for middle of train: half the charge for errors
 - Keep matched aspect ratio of reference bunch same for each turn
 - ⋆ Keep bucket area constant also
 - **★** Result: phase same for each turn
 - ★ Adjust A_{56} for arcs
 - ★ Later passes have lower synchrotron tune
 - Worst beam loading on last turn
 - ◆ Ensure that there is sufficient area in bucket for bunch at end of train on last turn

Numbers

- Oscillation amplitudes from simulation, not formulas
- Low charge (2×10^{12}) : Fermilab study

p_{min}	p_{max}	f	n	σ_E	ΔE	$\Delta \epsilon_L/\epsilon_L$
${\sf GeV}/c$	GeV/c	MHz		MeV	MeV	%
12	50	200	5	121	21	1.7
12	50	200	8	104	13	1.2
12	50	200	15	85	8	0.9
12	50	400	5	195	44	2.5
12	50	400	8	168	28	1.7
12	50	400	15	139	17	1.1
12	50	800	5	318	97	4.4
12	50	800	8	276	65	2.8
12	50	800	15	234	40	1.7

Beam loading not an issue even at 800 MHz

• High charge (1.8×10^{13})

p_{min}	p_{max}	f	n	σ_E	ΔE	$\Delta \epsilon_L/\epsilon_L$
GeV/c	GeV/c	MHz		MeV	MeV	%
12	50	200	5	175	260	101
12	50	200	10	154	159	51
12	50	400	5	328	669	207

Beam loading a major problem!

 More turns helps: less energy offset before oscillation begins

Correction

- Put each bunch at its fixed point
 - ◆ Slightly different frequency in acceleration than in bunching/cooling.
 - ◆ Timing
 - ◆ Can only fix on average
- Less current in the bunch train
 - ◆ E.g.: 6 bunches from AGS
 - ★ Ramp and put into storage ring at top energy
 - ★ Accelerating next set while storing
 - ★ Send individually to second ring to phase rotate
 - ★ More switchyards, more opportunities for activation
 - ◆ Increases average power in acceleration, cooling
 - ★ Same stored energy must be supplied and dumped, regardless of charge
 - ★ Higher rep rate, more energy delivered per second